Midbrain periaqueductal gray and vocal patterning in a teleost fish.
نویسندگان
چکیده
Midbrain structures, including the periaqueductal gray (PAG), are essential nodes in vertebrate motor circuits controlling a broad range of behaviors, from locomotion to complex social behaviors such as vocalization. Few single-unit recording studies, so far all in mammals, have investigated the PAG's role in the temporal patterning of these behaviors. Midshipman fish use vocalization to signal social intent in territorial and courtship interactions. Evidence has implicated a region of their midbrain, located in a similar position as the mammalian PAG, in call production. Here, extracellular single-unit recordings of PAG neuronal activity were made during forebrain-evoked fictive vocalizations that mimic natural call types and reflect the rhythmic output of a known hindbrain-spinal pattern generator. The activity patterns of vocally active PAG neurons were mostly correlated with features related to fictive call initiation. However, spike trains in a subset of neurons predicted the duration of vocal output. Duration is the primary feature distinguishing call types used in different social contexts and these cells may play a role in directly establishing this temporal dimension of vocalization. Reversible, lidocaine inactivation experiments demonstrated the necessity of the midshipman PAG for fictive vocalization, whereas tract-tracing studies revealed the PAG's connectivity to vocal motor centers in the fore- and hindbrain comparable to that in mammals. Together, these data support the hypotheses that the midbrain PAG of teleosts plays an essential role in vocalization and is convergent in both its functional and structural organization to the PAG of mammals.
منابع مشابه
Reproductive and diurnal rhythms regulate vocal motor plasticity in a teleost fish.
Seasonal and circadian rhythms control fundamental physiological processes including neural excitability and synaptic plasticity that can lead to the periodic modulation of motor behaviors like social vocalizations. Parental male midshipman fish produce three call types during the breeding season: long duration (min to >1 h) advertisement 'hums', frequency and amplitude modulated agonistic 'gro...
متن کاملAnatomical distribution and cellular basis for high levels of aromatase activity in the brain of teleost fish: aromatase enzyme and mRNA expression identify glia as source.
Although teleost fish have higher levels of brain aromatase activity than any other vertebrate group, its function remains speculative, and no study has identified its cellular basis. A previous study determined aromatase activity in a vocal fish, the plainfin midshipman (Porichthys notatus), and found highest levels in the telencephalon and lower levels in the sonic hindbrain, which was dimorp...
متن کاملMicroinjection of calcitonin in midbrain periaqueductal gray attenuates hyperalgesia in a chronic constriction injury rat model
Objective(s): As heat, pain is one of the most common clinical symptoms. Generally, calcitonin (CT) is prescribed as an analgesic agent for the treatment of pain, especially for the pain caused by osteoporosis or primary and metastatic bone tumor. However, the detailed mechanism remains unknown.Materials and Methods: In this study, chronic constriction injury (CCI) rat model was created, and ho...
متن کاملD-serine in the midbrain periaqueductal gray contributes to morphine tolerance in rats
BACKGROUND The N-methyl-D-aspartate subtype of glutamate receptor plays a critical role in morphine tolerance. D-serine, a co-agonist of N-methyl-D-aspartate receptor, participates in many physiological and pathophysiological processes via regulating N-methyl-D-aspartate receptor activation. The purinergic P2X7 receptor activation can induce the D-serine release in the central nervous system. T...
متن کامل“Singing” Fish Rely on Circadian Rhythm and Melatonin for the Timing of Nocturnal Courtship Vocalization
The patterning of social acoustic signaling at multiple timescales, from day-night rhythms to acoustic temporal properties, enhances sender-receiver coupling and reproductive success [1-8]. In diurnal birds, the nocturnal production of melatonin, considered the major vertebrate timekeeping hormone [9, 10], suppresses vocal activity but increases song syllable duration over circadian and millise...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 96 1 شماره
صفحات -
تاریخ انتشار 2006